6.1.1) que satisfacen las condiciones de los ejercicios 1 al 3.
1. Un entremés y una bebida
2. Un entremés, un plato fuerte y una bebida opcional
3. Un entremés opcional, un plato fuerte y una bebida opcional
4. Un hombre tiene ocho camisas, cuatro pantalones y cinco pares de
zapatos. ¿Cuántos atuendos diferentes son posibles?
5. Las opciones disponibles en un modelo específico de automóvil
son cinco colores para el interior, seis colores de exterior, dos tipos
de asientos, tres tipos de motor y tres tipos de radio. ¿De cuántas
posibilidades diferentes dispone el cliente?
6. El sistema Braille para representar caracteres fue desarrollado a
principios del siglo IX por Louis Braille. Los caracteres especiales
para el invidente consisten en puntos en relieve. Las posiciones
para los puntos se seleccionan en dos columnas verticales de tres puntos
cada una. Debe haber al menos un punto en relieve. ¿Cuántos
caracteres distintos de Braille puede haber?
7. Comente la siguiente nota del New York Times:
Las camionetas de carga también llaman la atención por
el aparente número infinito de maneras de personalizarlas;
se necesitan las habilidades matemáticas de Will
Hunting para obtener el total de configuraciones. Para
comenzar, hay 32 combinaciones de cabinas (estándar,
cabina club, cuadrángulo), cajas de carga (6.5 u 8 pies)
y motores (3.9 litros V6, 5.2 litros V8, 5.9 litros V8, 5.9
litros V8, 5.9 litros turbo diesel alineado 6, 8 litros
V10).
En los ejercicios 8 al 16, se lanzan dos dados, uno azul y otro rojo.
8. ¿Cuántos resultados posibles hay?
9. ¿Cuántos resultados suman 4?
10. ¿Cuantos resultados son dobles? (Un doble ocurre cuando los dos dados muestran el mismo número).
11. ¿Cuántos resultados suman 7 u 11?
12. ¿En cuántos resultados el dado azul muestra 2?
13. ¿En cuántos resultados exactamente un dado muestra 2?
14. ¿Cuántos resultados tienen al menos un dado que muestra 2?
15. ¿En cuántos resultados ningún dado muestra 2?
16. ¿Cuántos resultados dan una suma par?
En los ejercicios 17 al 19, suponga que existen 10 caminos de Oz a Media
Tierra y 5 de Media Tierra a la Isla de la Fantasía.
17. ¿Cuántas rutas hay de Oz a la Isla de la Fantasía que pasan por
Media Tierra?
Fantasía-Media Tierra-Oz hay?
19. ¿Cuántos viajes redondos de la forma Oz-Media Tierra-Isla de la
Fantasía-Media Tierra-Oz hay donde en el viaje de regreso no se
invierte la ruta original de Oz a la Isla de la Fantasía?
20. ¿Cuántas placas de automóvil se puede hacer que contengan tres
letras seguidas de dos dígitos y si se permite que haya repeticiones?
Y ¿si no hay repeticiones?
22. ¿Cuántas cadenas de 8 bits comienzan y terminan con 1?
23. ¿Cuántas cadenas de 8 bits tienen 1 en el segundo o el cuarto bit
(o en ambos)?
25. ¿Cuántas cadenas de 8 bits tienen exactamente dos unos?
26. ¿Cuántas cadenas de 8 bits tienen al menos un 1?
27. ¿Cuántas cadenas de 8 bits se leen igual al derecho y al revés? (Un ejemplo de tal cadena es 01111110. Estas cadenas se llaman palíndromos).
En los ejercicios 28 al 33, un comité de seis personas compuesto por
Alicia, Benjamín, Consuelo, Adolfo, Eduardo y Francisco debe elegir
un presidente, secretario y tesorero.
29. ¿Cuántas selecciones existen en las que ni Benjamín ni Francisco
tienen un puesto?
30. ¿Cuántas selecciones existen en las que tanto Benjamín como
Francisco tienen un puesto?
no?
32. ¿Cuántas selecciones hay que tengan a Adolfo como presidente o
que no incluyan a Adolfo?
33. ¿Cuántas selecciones hay donde Benjamín sea presidente o tesorero?
En los ejercicios 34 al 41, las letras ABCDE deben usarse para formar
cadenas de longitud 3.
34. ¿Cuántas cadenas se pueden formar si se permiten repeticiones?
35. ¿Cuántas cadenas se pueden formar si no se permiten repeticiones?
36. ¿Cuántas cadenas comienzan con A, cuando hay repeticiones?
37. ¿Cuántas cadenas comienzan con A, si no hay repeticiones?
38. ¿Cuántas cadenas no contienen a la letra A cuando se permiten repeticiones?
39. ¿Cuántas cadenas no contienen a la letra A si no hay repeticiones?
40. ¿Cuántas cadenas contienen a la letra A, si se permiten repeticiones?
41. ¿Cuántas cadenas contienen a la letra A si no se permiten repeticiones?
Los ejercicios 42 al 52 se refieren a los enteros entre 5 y 200, inclusive.
42. ¿Cuántos números hay?
43. ¿Cuántos son pares?
45. ¿Cuántos son divisibles entre 5?
46. ¿Cuántos son mayores que 72?
47. ¿Cuántos consisten en dígitos diferentes?
51. ¿Cuántos tienen dígitos en orden estrictamente creciente? (Por
ejemplo, 13, 147, 8.)
52. ¿Cuántos son de la forma xyz, donde 0 x < y y y > z?
53. a) ¿De cuántas maneras pueden ser diferentes los meses en que
cumplen años cinco personas?
b) ¿Cuántas posibilidades hay para los meses de los cumpleaños
de cinco personas?
c) ¿De cuántas maneras pueden por lo menos dos personas entre
cinco tener su cumpleaños en el mismo mes?
Los ejercicios 54 al 58 se refieren a un conjunto de cinco libros de computación,
tres de matemáticas y dos de arte, todos diferentes.
54. ¿De cuántas maneras pueden arreglarse estos libros en una repisa?
55. ¿De cuántas maneras pueden arreglarse éstos en una repisa si los
cinco libros de computación van a la izquierda y los dos de arte a
la derecha?
si los cinco de computación van a la izquierda?
57. ¿De cuántas maneras se pueden arreglar estos libros en una repisa
si se agrupan todos los libros de la misma disciplina?
58. ¿De cuántas maneras se pueden arreglar estos libros en una repisa
si los dos libros de arte no quedan juntos?
59. En algunas versiones de FORTRAN, un identificador consiste en una
cadena de uno a seis caracteres alfanuméricos que comienza con
una letra. (Un carácter alfanumérico es una letra de la A a la Z o
un dígito del 0 al 9). ¿Cuántos identificadores válidos de FORTRAN
existen?
60. Si X es un conjunto de n elementos y Y es un conjunto de m elementos,
¿cuántas funciones existen de X a Y?
libros. ¿De cuántas maneras se pueden elegir 10 libros?
(x + y)(a + b + c)(e + f + g)(h + i)?
63. ¿Cuántos subconjuntos de un conjunto de (2n + 1) elementos tienen n elementos o menos?
64. ¿Cuántas relaciones antisimétricas existen en un conjunto de n
elementos?
65. Si X y Y no son subconjuntos ajenos, no se puede sumar |X| a |Y|
para calcular el número de elementos en X ∪ Y. Pruebe que
|X ∪ Y| = |X| + |Y| − |X ∩ Y |
para conjuntos arbitrarios X y Y.
Use el resultado del ejercicio 65 para resolver los ejercicios 66 al 70.
66. ¿Cuántas cadenas de 8 bits comienzan con 100 o el cuarto bit
es 1?
En los ejercicios 68 y 69, un comité de seis personas constituido por
Alicia, Benjamín, Consuelo, Adolfo, Eduardo y Francisco debe seleccionar
un presidente, secretario y tesorero.
68. ¿Cuántas selecciones existen en las que Benjamín es presidente o
Alicia es secretaria?
69. ¿Cuántas selecciones existen en las que Consuelo es presidente o
Alicia tiene un puesto?
un 3 en el dado azul o una suma par?
71. ¿Cuántos operadores binarios hay en {1, 2, . . . , n}?
72. ¿Cuántos operadores binarios conmutativos hay en {1, 2, . . . , n}?